2022
DOI: 10.48550/arxiv.2206.09423
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Efficient End-to-End AutoML via Scalable Search Space Decomposition

Yang Li,
Yu Shen,
Wentao Zhang
et al.

Abstract: End-to-end AutoML has attracted intensive interests from both academia and industry which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning. Existing AutoML systems, however, suffer from scalability issues when applying to application domains with large, high-dimensional search spaces. We present VolcanoML, a scalable and extensible framework that facilitates systematic exploration of large AutoML search spaces. VolcanoML in… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 47 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?