Liquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, although the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. Here, we compute aqueous-phase VIEs for a set of inorganic anions, some of which partition preferentially at the air/water interface, using a combination of molecular dynamics simulations and electronic structure calculations. The results are in excellent agreement with experiment, regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk liquid water. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in the bulk and interfacial environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy. More generally, analysis of the simulation data suggests that partitioning of soft anions at the air/water interface is largely a second (or third) solvation shell effect, arising from disruption of water-water hydrogen bonds and not from significant changes in first-shell anion-water hydrogen bonding. <br>