In this paper, a high-accuracy conservative implicit algorithm for computing the space fractional coupled Schrödinger–Boussinesq system is constructed. Meanwhile, the conservative nature, a priori boundedness, and solvability of the numerical solution are presented. Then, the proposed algorithm is proved to be second-order convergence in temporal and fourth-order spatial convergence using the discrete energy method. Finally, some numerical experiments validate the effectiveness of the conservative algorithm and confirm the accuracy of the theoretical results for different choices of the fractional-order α.