2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 2005
DOI: 10.1109/iembs.2005.1615553
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Gene Expression Analysis by Linking Multiple Data Mining Algorithms

Abstract: The set of gene micro-arrays, which consists of two leukemia types, was used as a target to evaluate the efficiency of novel integrated data mining classification process. Discovering the most relevant subset of genes among few thousands of analyzed genes is necessary to get accurate disease classification. Dimensional complexity of the classification process was reduced by a filter based on mutual information feature selection coupled with the support vector machines classifier in the leave-one-out loop. The … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
2

Year Published

2006
2006
2009
2009

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(5 citation statements)
references
References 4 publications
0
3
0
2
Order By: Relevance
“…The proposed technique achieved an accuracy of 96% and demonstrated its superiority over several other techniques used in some work[20] (94% & 34% in best and worst scenario) &[21] (91.43%).…”
mentioning
confidence: 88%
“…The proposed technique achieved an accuracy of 96% and demonstrated its superiority over several other techniques used in some work[20] (94% & 34% in best and worst scenario) &[21] (91.43%).…”
mentioning
confidence: 88%
“…Un for tu na te ly, the num ber of mul ti va ria te fi l te rs is not ve ry lar ge. Be si des mu tual in for ma tion ba sed ap proac hes (6,7,8), cer tain sta tis ti cal and mac hi ne lear ni ng/prediction too ls cou ld be used for mul ti va ria te se lec tion of re le va nt ge nes, i.e. di men sio na li ty re duc tion.…”
Section: Ma Te Ri Ja LI I Me To Dementioning
confidence: 99%
“…Od oso bi tog bi znače nja bi lo is pi ti va nje prik lad nos ti od re đi va nja se rum ske kon cen tra ci je cis ta ti na C u svr hu raz li ko va nja AML i ALL. Ko nač no, ve ći na ge na nab ro je nih u Tab li ci 1 su ta ko đer pre poz na ti od stra ne dru gih au to ra (7,8,23) i ve ći na njih je ko ris ti la uni va ri jat ne fi l tre. Ova či nje ni ca uka zu je da se prob lem raz li ko va nja AML/ALL mo že sves ti na uni va ri jatni ili li near no raz dvo ji vi prob lem (Sli ke 2a i 2b).…”
Section: Sliunclassified
See 2 more Smart Citations