Chemoenzymatic synthesis is emerging as a promising approach to the synthesis of homogeneous glycopeptides and glycoproteins highly demanded for functional glycomics studies, but its generality relies on the availability of a range of enzymes with high catalytic efficiency and well defined substrate specificity. We describe in this paper the discovery of glycosynthase mutants derived from Elizabethkingia meningoseptica endoglycosidase F3 (Endo-F3) of the GH18 family, which are devoid of the inherent hydrolytic activity but are able to take glycan oxazolines for transglycosylation. Notably, the Endo-F3 D165A and D165Q mutants demonstrated high acceptor substrate specificity toward ␣1,6-fucosyl-GlcNAc-Asn or ␣1, 6-fucosyl-GlcNAc-polypeptide in transglycosylation, enabling a highly convergent synthesis of core-fucosylated, complex CD52 glycopeptide antigen. The Endo-F3 mutants were able to use both bi-and triantennary glycan oxazolines as substrates for transglycosylation, in contrast to previously reported endoglycosidases derived from Endo-S, Endo-M, Endo-D, and Endo-A mutants that could not recognize triantennary N-glycans. Using rituximab as a model system, we have further demonstrated that the Endo-F3 mutants are highly efficient for glycosylation remodeling of monoclonal antibodies to produce homogeneous intact antibody glycoforms. Interestingly, the new triantennary glycan glycoform of antibody showed much higher affinity for galectin-3 than that of the commercial antibody. The Endo-F3 mutants represent the first endoglycosidase-based glycosynthases capable of transferring triantennary complex N-glycans, which would be very useful for glycoprotein synthesis and glycosylation remodeling of antibodies.Protein glycosylation is one of the most prevalent posttranslational modifications, found in almost all living organisms ranging from bacteria to eukaryotes (1). Glycosylation can profoundly affect a protein's intrinsic properties, such as folding, stability, intracellular trafficking, and immunogenicity. In addition, the oligosaccharide components of glycoproteins can participate directly in a number of important biological recognition processes, including cell adhesion, signaling, hostpathogen interactions, and immune responses (2-8). It is well documented that subtle changes in glycosylation can lead to a significant impact on the biological functions and, in the case of therapeutic glycoproteins, such as monoclonal antibodies, the in vivo stability and therapeutic efficacy (7, 9 -12). Natural and recombinant glycoproteins are usually produced as mixtures of glycoforms that differ only in the structures of pendant glycans, from which pure glycoforms are extremely difficult to isolate by current chromatographic techniques. As a result, synthetic homogeneous glycopeptides and glycoproteins emerge as indispensable tools for functional studies and for drug/vaccine discoveries. Many elegant chemical and biochemical strategies have been explored for making homogeneous glycoproteins and mimics, including total chemic...