2010 IEEE International Conference on Image Processing 2010
DOI: 10.1109/icip.2010.5653963
|View full text |Cite
|
Sign up to set email alerts
|

Efficient graph-based image segmentation via speeded-up turbo pixels

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
27
0
3

Year Published

2013
2013
2022
2022

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 42 publications
(30 citation statements)
references
References 9 publications
0
27
0
3
Order By: Relevance
“…Speeded-up Turbo Pixels (STP) algorithm is technique for superpixels generation based on K-means grouping algorithm [6]. This algorithm generates uniforms superpixels with low computational cost.…”
Section: Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…Speeded-up Turbo Pixels (STP) algorithm is technique for superpixels generation based on K-means grouping algorithm [6]. This algorithm generates uniforms superpixels with low computational cost.…”
Section: Methodsmentioning
confidence: 99%
“…The images segmentation is an efficient area used in this application type, because it allows isolating regions in the image that have characteristics in common, helping to classify them according to the structures that compose them. For example, superpixels extraction techniques, based in k-means clustering algorithm, can be used to segment appropriately medical images with low computational cost [6,7,8].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Graph Cut segmentation is then formulated according to the watershed regions graph. Starting from a grid partition, [16] cluster image pixels by an iterative k-means algorithm augmented by color similarity and shape compactness criteria. The cluster graph is then partitioned based on color information yielding a coarse segmentation of the image.…”
Section: A Graph Cut In Segmentation and Its Complexitymentioning
confidence: 99%
“…Uma vez que os pixels contidos no mesmo superpixel são considerados iguais por definição, primitivas de superpixels têm algumas vantagens sobre as primitivas de pixels, como eficiência computacional, já que o número de primitivas é reduzido no nível de superpixel. Isso traz grandes oportunidades para aliviar a complexidade de sistemas de Visão Computacional (Cuadros et al, 2012;Çigla e Alatan, 2010). Superpixels podem ser usados em uma grande variedade de aplicações: segmentação de imagens médicas (Wu et al, 2014), segmentação do céu em fotos de paisagem (sky segmentation) (Kostolansky, 2016), segmentação de movimento (motion segmentation) (Ayvaci e Soatto, 2009), segmentação de objetos em múltiplas classes (multi-class object segmentation) (Fulkerson et al , 2009a;Yang et al, 2012), detecção de objetos (object detection) (Shu et al, 2013), detecção de saliência espaço-temporal (spatiotemporal saliency detection) (Liu et al, 2014), rastreamento de alvos (target tracking) (Yang et al, 2014), estimativa de modelo corporal (body model estimation) e estimativa de profundidade (depth estimation) (Zitnick e Kang, 2007).…”
unclassified