This article presents a new index, polarizationconversion ratio (PCR) to characterize depolarized bistatic scattering from rough surfaces with dielectric inhomogeneity and spatial anisotropy. We then investigate the dependence of PCR on both surface and radar parameters. Numerical results show that the distribution of PCR on the scattering plane varies with the polarization state of the incident wave and incident angle. The PCR clusters more in the cross-plane for horizontally polarized incidence. However, for vertically polarized incidence, the PCR disperses as "triangular shape" on the whole scattering plane with a sharp valley occurring in the incident plane. The following points can be drawn: 1) the inhomogeneity effectively enhances the PCR in the cross-plane; 2) the effect of anisotropy on the PCR is relatively weak, because the scattering is less affected by correlation length; 3) the impacts of surface rms height on the PCR are negative on the whole scattering plane; and 4) as the background permittivity increases, at the horizontally polarized incidence, the PCR is enhanced in the backward and forward regions, while at vertically polarized incidence, it is enhanced in the incident plane and the forward region. As is demonstrated, the PCR is an effective measure of the sensitivity of depolarization, making it potentially useful as a new reliable index for surface parameter inversion.