This article presents an innovative approach to analyzing and extracting electrocardiogram (ECG) signals from the abdomen and thorax of pregnant women, with the primary goal of isolating fetal ECG (fECG) and maternal ECG (mECG) signals. To resolve the difficulties related to the low amplitude of the fECG, various noise sources during signal acquisition, and the overlapping of R waves, we developed a new method for extracting ECG signals using blind source separation techniques. This method is based on independent component analysis algorithms to detect and accurately extract fECG and mECG signals from abdomen and thorax data. To validate our approach, we carried out experiments using a real and reliable database for the evaluation of fECG extraction algorithms. Moreover, to demonstrate real-time applicability, we implemented our method in an embedded card linked to electronic modules that measure blood oxygen saturation (SpO2) and body temperature, as well as the transmission of data to a web server. This enables us to present all information related to the fetus and its mother in a mobile application to assist doctors in diagnosing the fetus’s condition. Our results demonstrate the effectiveness of our approach in isolating fECG and mECG signals under difficult conditions and also calculating different heart rates (fBPM and mBPM), which offers promising prospects for improving fetal monitoring and maternal healthcare during pregnancy.