Implicit Error Correction (IEC) is a near Video-on-Demand (nVoD) scheme that trades bandwidth utilization for initial playback delay to potentially support an infinite number of users. Additionally, it provides error protection without any further bandwidth increase by exploiting the implicit redundancy of nVoD protocols, using linear combinations of the segments transmitted in a given time slot. However, IEC packet loss protection is weaker at the beginning of the playback due to the lack of implicit redundancy and lower decoding efficiency, resulting in worse subjective playback quality. In tackling this issue, this paper contributes with an extension of the original nVoD architecture, enhancing its performance by adding a new element namely, subchannels. These subdivisions of the original channels do not provide further packet loss protection but significantly improve the decoding efficiency, which in turn increases playback quality, especially at the beginning. Even for very high packet loss probabilities, subchannels are designed to obtain higher decoding efficiency which results in greater packet loss protection than that provided by IEC. The proposed scheme is especially useful in wireless cooperative networks using techniques such as network coding, as content transmissions can be split into different subchannels in order to maximize network efficiency.