2021
DOI: 10.1002/sam.11565
|View full text |Cite
|
Sign up to set email alerts
|

Efficient importance sampling imputation algorithms for quantile and composite quantile regression

Abstract: Nowadays, missing data in regression model is one of the most well‐known topics. In this paper, we propose a class of efficient importance sampling imputation algorithms (EIS) for quantile and composite quantile regression with missing covariates. They are an EIS in quantile regression (EISQ) and its three extensions in composite quantile regression (EISCQ). Our EISQ uses an interior point (IP) approach, while EISCQ algorithms use IP and other two well‐known approaches: Majorize‐minimization (MM) and coordinat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?