Background: Protein or peptide-based subunit vaccines are promising platforms for combating human cancers and infectious diseases. However, one primary concern regarding subunit vaccines is the relatively weak immune responses induced by proteins or peptides. Therefore, developing novel and effective vaccine adjuvants is critical for the success of subunit vaccines. Modified vaccinia virus (MVA) is a safe and effective vaccine against smallpox and monkeypox. In this study, we explored the potential of heat-inactivated MVA (heat-iMVA) as a novel vaccine adjuvant. Methods: We co-administered heat-iMVA with a model antigen, chicken ovalbumin (OVA), either intramuscularly or subcutaneously twice, two weeks apart, and analyzed anti-OVA specific CD8+ and CD4+ T cells in the spleens and skin draining lymph nodes (dLNs) and serum anti-OVA IgG1 and IgG2c antibodies. We also compared the adjuvant effects of heat-iMVA with several known vaccine adjuvants. In addition, we tested whether co-administration of heat-iMVA plus tumor neoantigen peptides or irradiated tumor cells improves antitumor efficacy in a B16-F10 murine melanoma therapeutic vaccination model. Using Stimulator of Interferon Genes (STING) or Batf3-deficient mice, we evaluated the contribution of the STING pathway and Batf3-dependent CD103+/CD8alpha DCs in heat-iMVA-induced immunity. Results: Co-administration of protein- or peptide-based immunogens with heat-iMVA dramatically enhances Th1-biased cellular and humoral immune responses. This adjuvant effect of heat-iMVA is dependent on the STING-mediated cytosolic DNA-sensing pathway, and the antigen-specific CD8+ T cell response requires Batf3-dependent CD103+/CD8alpha dendritic cells (DCs). Heat-iMVA infection of bone marrow-derived DCs (BMDCs) promoted antigen cross-presentation, whereas live MVA infection did not. RNA-seq analyses revealed that heat-iMVA is a more potent activator of the STING pathway than live MVA. Additionally, combining tumor neoantigen peptides or irradiated tumor cells with heat-iMVA delayed tumor growth and extended the median survival in B16-F10 therapeutic vaccination models. Conclusions: Heat-iMVA induces type I interferon (IFN) production and antigen cross-presentation via a STING-dependent mechanism in DCs. Co-administration of heat-iMVA with peptide antigen generates strong Th1-biased cellular and humoral immunity. Collectively, our results demonstrate that heat-iMVA is a safe and potent vaccine adjuvant.