2017
DOI: 10.1007/s10237-017-0906-6
|View full text |Cite
|
Sign up to set email alerts
|

Efficient isogeometric thin shell formulations for soft biological materials

Abstract: This paper presents three different constitutive approaches to model thin rotation-free shells based on the Kirchhoff-Love hypothesis. One approach is based on numerical integration through the shell thickness while the other two approaches do not need any numerical integration and so they are computationally more efficient. The formulation is designed for large deformations and allows for geometrical and material nonlinearities, which makes it very suitable for the modeling of soft tissues. Furthermore, six d… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
26
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 38 publications
(26 citation statements)
references
References 51 publications
0
26
0
Order By: Relevance
“…It has since been used to solve the most challenging science and engineering applications [23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39]. For thin structures, isogeometric shells [40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57] have been previously demonstrated as an effective method for the analysis of complex problems , including the analysis of composites [83][84][85][86][87][88][89][90][91][92]. Isogeometric shells have also been effectively applied to wind turbine structural [93][94][95][96]…”
Section: Introductionmentioning
confidence: 99%
“…It has since been used to solve the most challenging science and engineering applications [23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39]. For thin structures, isogeometric shells [40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57] have been previously demonstrated as an effective method for the analysis of complex problems , including the analysis of composites [83][84][85][86][87][88][89][90][91][92]. Isogeometric shells have also been effectively applied to wind turbine structural [93][94][95][96]…”
Section: Introductionmentioning
confidence: 99%
“…Tepole et al [40] and Roohbakhshan et al [41] utilize a projection method to extract a membrane constitutive law from the anisotropic three-dimensional biomaterial model of Gasser et al [42]. This projection method is extended to extract a shell formulation for composite materials and biological tissues by Roohbakhshan and Sauer [43, 44]. Here, the projection method of Roohbakhshan and Sauer [44] is extended to finite-temperature material models.…”
Section: Introductionmentioning
confidence: 99%
“…Here, the isogeometric shell formulation of [2][3][4] is used to model an artery. The formulation allows for the modeling of laminated composite shells constructed from different materials, like the adventitia, media and intima layers of an artery.…”
Section: Introductionmentioning
confidence: 99%
“…the kinematics, weak form of the boundary value problem, finite element formulation and constitutive modeling are skipped here. The reader is recommended to see [2,3,5] for more details.…”
Section: Introductionmentioning
confidence: 99%