Proceedings of the Third International Workshop on Keyword Search on Structured Data 2012
DOI: 10.1145/2254736.2254749
|View full text |Cite
|
Sign up to set email alerts
|

Efficient keyword search on large tree structured datasets

Abstract: Keyword search is the most popular paradigm for querying XML data on the web. In this context, three challenging problems are (a) to avoid missing useful results in the answer set, (b) to rank the results with respect to some relevance criterion and (c) to design algorithms that can efficiently compute the results on large datasets.In this paper, we present a novel multi-stack based algorithm that returns as an answer to a keyword query all the results ranked on their size. Our algorithm exploits a lattice of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
3

Year Published

2013
2013
2020
2020

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 9 publications
(9 citation statements)
references
References 29 publications
0
6
0
3
Order By: Relevance
“…(1) when a place is added to R, where we need to update the score of all seen elements and (2) when a new place is emerged from our kS P algorithms, where we need to calculate its diversity score against all elements in R. Finally, IAdU algorithm uses a threshold, θ , that facilitates the pruning of unseen places if they cannot qualify in R. [15][16][17][18][19] which is calculated against places already in R (lines 16,17). The threshold θ is updated accordingly (line 19).…”
Section: Incremental Addition and Update (Iadu) Algorithmmentioning
confidence: 99%
See 1 more Smart Citation
“…(1) when a place is added to R, where we need to update the score of all seen elements and (2) when a new place is emerged from our kS P algorithms, where we need to calculate its diversity score against all elements in R. Finally, IAdU algorithm uses a threshold, θ , that facilitates the pruning of unseen places if they cannot qualify in R. [15][16][17][18][19] which is calculated against places already in R (lines 16,17). The threshold θ is updated accordingly (line 19).…”
Section: Incremental Addition and Update (Iadu) Algorithmmentioning
confidence: 99%
“…In view of this limitation, keyword search paradigms facilitate retrieval using only keywords [16][17][18][19][20][21][22][23]26,40,46,50]. Given a query that consists of a set of keywords, an answer is a subgraph of the RDF graph.…”
mentioning
confidence: 99%
“…In [11] we present a multi-stack algorithm which also exploits multiple stacks to compute LCAs and their sizes. This algorithm does not compute results restricted by a threshold or top-k results which is the focus of this paper.…”
Section: Related Workmentioning
confidence: 99%
“…΄Ενα μεγάλο μέρος της βιβλιογραφίας ασχολείται με τον ορισμό της σημασιολογίας των ελάχιστων κοινών προγόνων, που ορίζουν ένα ακριβέστερο και πληρέστερο σύνολο αποτελεσμάτων αναζήτησης [13,22,21,26,35,52,23,28,11,17,6,29,34,49,42,2,18,1]. Οι βασικές σημασιολογίες φιλτραρίσματος των LCA μιας ερώτησης σε μια βάση δεδομένων είναι τέσσερις.…”
Section: φιλτράρισμα χαμηλότερων κοινών προγόνωνunclassified
“…Ως εκ τούτου, οι εισαγωγές σε μια στοίβα ελαχιστοποιούνται. ΄Οταν ένας μερικός LCA προκύψει σε ένα επίπεδο του δικτυωτού, πρόστίθεται στη λίστα μερικών LCA του επόμενου επιπεδου (γραμμές [15][16][17][18][19]. Αν η λίστα περιέχει ήδη έναν συγκρίσιμο μερικό LCA για τον ίδιο κόμβο του δέντρου (ίδιο κωδικό Dewey), μόνο το μικρότερο μέγεθος αποθηκεύεται στη λίστα (γραμμές [18][19].…”
Section: περιγραφή του αλγορίθμουunclassified