서 론모바일 로봇은 현재 많은 연구자들이 관심을 갖 고 있는 연구 주제이다.( Abstract: In robotics research, accurate estimation of current robot position is important to achieve motion control of a robot. In this research, we focus on a sensor fusion method to provide improved position estimation for a wheeled mobile robot, considering two different sensor measurements. In this case, we fuse camera-based vision and encodebased odometry data using Kalman filter techniques to improve the position estimation of the robot. An external camera-based vision system provides global position coordinates (x, y) for the mobile robot in an indoor environment. An internal encoder-based odometry provides linear and angular velocities of the robot. We then use the position data estimated by the Kalman filter as inputs to the motion controller, which significantly improves performance of the motion controller. Finally, we experimentally verify the performance of the proposed sensor fused position estimation and motion controller using an actual mobile robot system. In our experiments, we also compare the Kalman filterbased sensor fused estimation with two different single sensor-based estimations (vision-based and odometry-based).