2010
DOI: 10.2139/ssrn.1625588
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Maximum Likelihood Estimation of Spatial Autoregressive Models with Normal But Heteroskedastic Disturbances

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

1
0
0

Year Published

2011
2011
2014
2014

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 16 publications
1
0
0
Order By: Relevance
“…The heteroskedasticity of spatial autoregressive models has led to several discussions (Anselin, 1988;Kelejian and Prucha, 2007;Lesage and Pace 2009). Yokoi (2010) confirms the efficiency of ML estimation in cases with heteroskedastic disturbances using Monte Carlo simulations. Furthermore, some authors, such as Lesage and Pace (2009), have recently provided a new approach to reduce computational tasks and to construct maximum likelihood estimates in only a matter of minutes.…”
Section: Econometric Methodssupporting
confidence: 69%
“…The heteroskedasticity of spatial autoregressive models has led to several discussions (Anselin, 1988;Kelejian and Prucha, 2007;Lesage and Pace 2009). Yokoi (2010) confirms the efficiency of ML estimation in cases with heteroskedastic disturbances using Monte Carlo simulations. Furthermore, some authors, such as Lesage and Pace (2009), have recently provided a new approach to reduce computational tasks and to construct maximum likelihood estimates in only a matter of minutes.…”
Section: Econometric Methodssupporting
confidence: 69%