This paper presents a transformer‐based reconfigurable synchronous boost converter. The lowest maximum power point tracking (MPPT)‐input voltage and peak efficiency of the proposed boost converter, 20 mV and 88%, respectively, were achieved using a reconfigurable synchronous structure, static power loss minimization design, and efficiency boost mode change (EBMC) method. The proposed reconfigurable synchronous structure for high efficiency enables both a transformer‐based self‐startup mode (TSM) and an inductor‐based MPPT mode (IMM) with a power PMOS switch instead of a diode. In addition, a static power loss minimization design, which was developed to reduce the leakage current of the native switch and quiescent current of the control blocks, enables a low input operation voltage. Furthermore, the proposed EBMC method is able to change the TSM into IMM with no additional time or energy loss. A prototype chip was implemented using a 0.18‐μm CMOS process, and operates within an input voltage range of 9 mV to 1 V, and an output voltage range of 1 V to 3.3 V, and provides a maximum output power of 37 mW.