An effective data mining method to automatically extract association rules between manufacturing capabilities and product features from the available historical data is essential for an efficient and cost-effective product development and production. This paper proposes a new binary particle swarm optimization- (BPSO-) based association rule mining (BPSO-ARM) method for discovering the hidden relationships between machine capabilities and product features. In particular, BPSO-ARM does not need to predefine thresholds of minimum support and confidence, which improves its applicability in real-world industrial cases. Moreover, a novel overlapping measure indication is further proposed to eliminate those lower quality rules to further improve the applicability of BPSO-ARM. The effectiveness of BPSO-ARM is demonstrated on a benchmark case and an industrial case about the automotive part manufacturing. The performance comparison indicates that BPSO-ARM outperforms other regular methods (e.g., Apriori) for ARM. The experimental results indicate that BPSO-ARM is capable of discovering important association rules between machine capabilities and product features. This will help support planners and engineers for the new product design and manufacturing.