2020
DOI: 10.1002/jsid.902
|View full text |Cite
|
Sign up to set email alerts
|

Efficient multiquality super‐resolution using a deep convolutional neural network for an FPGA implementation

Abstract: We propose an efficient deep convolutional neural network for a super‐resolution which is capable of multiple‐quality input, by analyzing the input quality and choosing appropriate features automatically. To implement the network in an FPGA and an ASIC, we employ a network trimming technique to compress the neural network.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 22 publications
0
0
0
Order By: Relevance