Water consumption has been one of the most important topics in the field of environment and economy. Even though the driving factors of water consumption have been well studied, it is still a daunting task to reveal the influence of the status of provinces in the entire supply chain. By combining the multi-regional input-output (MRIO) model and complex network theory, an inter-provincial virtual water transfer (V WT) network was constructed to analyze the overall structural characteristics of the network model and identify the structural roles of each province. The constructed inter-provincial V WT network exhibited the characteristics of a small-world network, that is, virtual water can be easily transferred from one province to another. Moreover, network analysis revealed that provinces with different positions in the V WT network played discrepant structural roles. Panel regression analysis was further used to quantify the impact of provincial structural roles on their water consumption. The results showed that water consumption in China largely depended on some structural role characteristics in the V WT network. Out-degree and out-strength characterizing the ability of direct exporting virtual water exerted significant positive influences, while in-closeness featuring the indirect virtual water importing rate had a significant negative effect on water usage. This indicated that adjusting the uneven provincial consumption structure, the direct production demand of downstream provinces and the indirect production activities in the supply chain would help reduce water consumption. Therefore, to come true the goal of water conservation in China, it would be necessary to improve the trade structure between direct and indirect exporters and importers in the entire supply chain.