Efficient off‐policy Q‐learning for multi‐agent systems by solving dual games
Yan Wang,
Huiwen Xue,
Jiwei Wen
et al.
Abstract:This article develops distributed optimal control policies via Q‐learning for multi‐agent systems (MASs) by solving dual games. According to game theory, first, the distributed consensus problem is formulated as a multi‐player non‐zero‐sum game, where each agent is viewed as a player focusing only on its local performance and the whole MAS achieves Nash equilibrium. Second, for each agent, the anti‐disturbance problem is formulated as a two‐player zero‐sum game, in which the control input and external disturba… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.