Quantitative dynamical models are widely used to study cellular signal processing. A critical step in modeling is the estimation of unknown model parameters from experimental data. As model sizes and datasets are steadily growing, established parameter optimization approaches for mechanistic models become computationally extremely challenging. However, mini-batch optimization methods, as employed in deep learning, have better scaling properties. In this work, we adapt, apply, and benchmark minibatch optimization for ordinary differential equation (ODE) models thereby establishing a direct link between dynamic modeling and machine learning. On our main application example, a large-scale model of cancer signaling, we benchmark mini-batch optimization against established methods, achieving better optimization results and reducing computation by more than an order of magnitude. We expect that our work will serve as a first step towards mini-batch optimization tailored to ODE models and enable modeling of even larger and more complex systems than what is currently possible.