Fiber-reinforced thermoplastic composites (FRTPs) are gaining increasing attention and widespread use in engineering applications due to their high specific strength and stiffness, excellent toughness, and recyclability. The mechanical properties of these composites are closely tied to their crystallization process, making it crucial to accurately describe this phenomenon. Existing theoretical models for analyzing the non-isothermal crystallization of thermoplastic composites often face challenges relating to the complexity of obtaining multiple parameters and the difficulty of achieving a final relative crystallinity of 1. To address these issues, this paper introduces a novel functional form of the crystallization rate parameter K(T), tailored for engineering applications, and proposes an improved Mampel model. This model assumes K(T) to be zero before the onset of crystallization and also to be linearly dependent on temperature thereafter, ensuring that the final relative crystallinity reaches 1. The model requires only two easily accessible parameters: the initial crystallization temperature (Ts) and the linear slope (k). The simplicity of the model makes it particularly well suited to engineering applications. This provides a straightforward and effective tool for describing the non-isothermal crystallization kinetics of fiber-reinforced thermoplastic composites.