Pesticide residues in food can bring potential risks to human health and has been widely concerned in recent years. In the current study, the influence of paclobutrazol, which resided in raw material (grape) on wine fermentation process, were investigated. The degradation kinetic results indicated that the enantiomers of paclobutrazol not be degraded during 30 days of fermentation process. In order to achieve the fermented microorganism information of diversity, community composition, and function, the analysis of 16S rRNA and ITS sequencing were performed. Results demonstrated that the dominant microorganisms multiplied and the microbial diversity in the samples decreased as the fermentation process progresses. Furthermore, the paclobutrazol stimulated the growth of Pichia, which was observed during wine fermentation and which may have an underlying impact on the quality of the wine. The above results inferred that paclobutrazol residue could disturb the microbial community stability during wine fermentation, and the stable existence of paclobutrazol will cause potential risks to food safety and human health. In this work, we have successfully devised a method to investigate the influences of pesticide residues in raw materials during food processing and conclusions from this study could provide basis for dietary risk assessment.