Abstract:We present methods to obtain computationally efficient proposal distributions for Bayesian reversible jump Markov chain Monte Carlo (RJMCMC) based image segmentation. The slow convergence of MCMC methods often makes them poorly suited for practical image processing applications. We show how carefully crafted proposal distributions along with certain approximations can decrease the computational cost of MCMC image segmentation to a level that is comparable with some traditional algorithms. We also discuss the i… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.