Recently we published the synthesis of new hybrid materials, ionic silica nanoparticles networks (ISNN), made of silica nanoparticles covalently connected by organic bridging ligands containing imidazolium units owing to a “click-chemistry-like” reaction. Among other techniques small-angle X-ray scattering (SAXS) experiments were carried out to get a better picture of the network extension. It turned out that the short-range order in ISNN materials was strongly influenced by the rigidity of the bridging ligand, while the position of the short-range order peaks confirmed the successful linking of the bridging ligands. The photoluminescence experiments reported in this communication revealed strongly enhanced emission in the hybrid material in comparison with neat imidazolium salts. Moreover the shift of the emission maximum toward longer wavelengths, obtained when varying the aromatic ring content of the bridging ligand, suggested the existence of strong π−π stacking in the hybrid material. Experiments revealed a stronger luminescence in those samples exhibiting the higher extent of short-range order in SAXS.