Система остаточных классов (СОК) — это непозиционная система счисления, являющаяся альтернативой двоичному представлению чисел. В СОК большое целое число представляется в виде набора меньших чисел, являющихся остатками от деления исходной величины на выбранные модули. СОК выполняет сложение, вычитание и умножение с каждым остатком по отдельности. Это приводит к параллельной, свободной от переносов и высокоскоростной компьютерной арифметике для высокопроизводительных вычислений. Однако немодульные операции, требующие оценки величины числа по остаткам, являются сложными для реализации в СОК, так как для них не существует параллельной формы. В вопросах практического использования СОК выполнение немодульных операций занимает центральное место.
Представлен обзор исследований в области разработки и применения на практике методов высокопроизводительных вычислений на основе СОК: Рассмотрены существующие техники выполнения важнейших немодульных операций, таких как обратное преобразование, сравнение чисел, вычисление знака и деление. Акцент сделан на методы, пригодные для произвольных наборов модулей. Показано, каким образом арифметика на основе СОК находит практическое применение в облачных средах, блокчейн-технологиях, вычислениях многократной точности и глубоких нейронных сетях. Рассмотрена новая программная библиотека высокопроизводительных вычислений в СОК для CPU и GPU, которая может быть полезной для задач, требующих больших динамических диапазонов (сотни и тысячи бит).
Обзор ориентирован на развитие новых направлений исследований, посвященных применению непозиционных систем счисления с параллельной структурой в ресурсоемких приложениях.