2023
DOI: 10.3390/s23135961
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Sensor Node Selection for Observability Gramian Optimization

Abstract: Optimization approaches that determine sensitive sensor nodes in a large-scale, linear time-invariant, and discrete-time dynamical system are examined under the assumption of independent and identically distributed measurement noise. This study offers two novel selection algorithms, namely an approximate convex relaxation method with the Newton method and a gradient greedy method, and confirms the performance of the selection methods, including a convex relaxation method with semidefinite programming (SDP) and… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
references
References 91 publications
0
0
0
Order By: Relevance