The main objective of the present study was to investigate the increase in the electromagnetic shielding effectiveness (EMSE) of a set of five variants of three-dimensional (3D) warp interlock woven fabrics containing silver multifilament yarns arranged in a 3D orthogonal grid. The EMSE enlargement as a factor of increasing the quantity of the conductive material per unit area was investigated. The quantity of the conductive material per unit area in a 3D woven fabric can be enlarged by increasing either the yarn undulation or the number of conductive yarn systems, while the yarn density and yarn fineness are fixed. Thus, the binding depth of the conductive warp was gradually increased for the first four variants in order to increase the yarn undulation. Alternatively, the conductive weft system was doubled for the last variant with the aim of increasing the quantity of the conductive component. It should be noted that changing the weave structure requires less effort and energy while keeping the same threading of warps in the reed compared to altering the warp density. The EMSE was measured in an anechoic chamber and the shielding was satisfactory for all the variants in the frequency range of 1–6 GHz (19–44 dB). The results revealed that increasing only 7% of the waviness degree of the conductive warps led to 17% EMSE improvement due to increasing of the conductive yarns through the thickness of the variants. Moreover, no upward EMSE was detected for the last variant, despite the fact that the conductive weft system was doubled.