Efficient simulation of non-classical liquid-vapour phase-transition flows: a method of fundamental solutions
Anirudh S Rana,
Sonu Saini,
Suman Chakraborty
et al.
Abstract:Classical continuum-based liquid vapour phase-change models typically assume continuity of temperature at phase interfaces along with a relation which describes the rate of evaporation at the interface (Hertz-Knudsen-Schrage, for example). However, for phase transitions processes at small scales, such as the evaporation of nanodroplets, the assumption that the temperature is continuous across the liquid-vapour interface leads to significant inaccuracies (McGaughey & Ward 2002;Rana et al. 2019), as may the adop… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.