The digitalization processes of documents produce frequently images with small rotation angles. The skew angles in document images degrade the performance of optical character recognition (OCR) tools. Therefore, skew detection of document images plays an important role in automatic document analysis systems. In this paper, we propose a Rectangular Active Contour Model (RAC Model) for content region detection and skew angle calculation by imposing a rectangular shape constraint on the zero-level set in ChanVese Model (C-V Model) according to the rectangular feature of content regions in document images. Our algorithm differs from other skew detection methods in that it does not rely on local image features. Instead, it uses global image features and shape constraint to obtain a strong robustness in detecting skew angles of document images. We experimented on different types of document images. Comparing the results with other skew detection algorithms, our algorithm is more accurate in detecting the skews of the complex document images with different fonts, tables, illustrations, and layouts. We do not need to pre-process the original image, even if it is noisy, and at the same time the rectangular content region of a document image is also detected.