An edge-cancellation-aided iterative detection and decoding (EC-IDD) algorithm is proposed for polar-coded sparse code multiple access (SCMA), which jointly performs Gaussianapproximated message passing (GA-MP) detection of SCMA supported by the soft list decoding (SLD) of polar codes. A reduced-edge factor graph is formulated in each consecutive iteration with the aid of the cyclic redundancy check (CRC) and EC. Based on the simplified factor graph, the EC-IDD gradually reduces its complexity in each subsequent iteration, while improving the bit error rate (BER) performance, compared to the state-of-the-art joint detection and decoding (JDD) of polar-coded SCMA. Furthermore, an embedded decision-directed channel estimator (DD-CE) is proposed for our polar-coded SCMA system under realistic imperfect channel state information (CSI). Our simulation results demonstrate that the proposed EC-IDD achieves better BER performance than the state-ofthe-art JDD under both perfect and imperfect CSI, despite achieving a complexity reduction of 92%. Finally, the BER of the proposed joint DD-CE and EC-IDD algorithm under imperfect CSI converges to that of EC-IDD operating under perfect CSI. Index Terms-Sparse code multiple access (SCMA), Gaussianapproximated message passing (GA-MP) detection, iterative detection and decoding (IDD), channel estimation (CE).