In this research, the biochar-based tin-loaded heterogeneous catalyst Sn-NUS-BH was used for the efficient catalytic conversion of corncob (CC) in a green biphasic system of cyclopentyl methyl ether–water (CPME-H2O). By optimizing the system conditions (CPME to H2O ratio, Sn-NUS-BH dosage, reaction time, and reaction temperature), the stubborn structure of corncobs was maximally disrupted. The chemical composition and structural characteristics (accessibility, lignin surface area, and hydrophobicity) of CC before and after treatment were assessed, demonstrating that the natural physical barriers of CC were disrupted and lignin was effectually eliminated. The accessibility was enhanced from 137.5 mg/g to 518.5 mg/g, the lignin surface area declined from 588.0 m2/g to 325.0 m2/g, and the hydrophobicity was changed from 4.7 L/g to 1.3 L/g. Through the treatment at 170 °C for 20 min, furfural (11.7 g/L) and xylooligosaccharides (4.5 g/L) were acquired in pretreatment liquor. The residual CC could be enzymatically saccharified into reducing sugars in a yield of 65.2%. The combination pretreatment with the tin-based biochar chemocatalyst Sn-NUS-BH combined with the green solvent system CPME-H2O shows great promise in the valorization of biomass.