2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS) 2016
DOI: 10.1109/icacsis.2016.7872781
|View full text |Cite
|
Sign up to set email alerts
|

Efficient texture image retrieval of improved completed robust local binary pattern

Abstract: Improved Completed Robust Local Binary Pattern is one of the robust texture extraction for image retrieval that rotation invariant (ICRLBP). ICRLBP has proven that can increase the precision, recall, and computation time from its previous work by 21.14%, 20.03%, and 56 times, respectively, on four different texture image dataset. ICRLBP, however, has a lot of feature, thus require more time during recognition process. Moreover, it leads to high time consuming and curse of dimensionality. To overcome those issu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
5
3

Relationship

2
6

Authors

Journals

citations
Cited by 9 publications
(8 citation statements)
references
References 15 publications
0
7
0
1
Order By: Relevance
“…Demikian juga dengan Batik tradisional Surakarta. Ciri yang digunakan untuk menjadi pembeda dengan ciri batik dari wilayah lain antara lain ciri bentuk [1] [2] [3][4] [5], ciri tekstur [6] [7] [8][9] [10], dan juga ciri warna [11] [12]. Dari berbagai ciri yang digunakan untuk identifikasi batik daerah satu dengan yang lain ada yang memiliki kesamaan namun ada juga yang memiliki perbedaan.…”
Section: Pendahuluanunclassified
“…Demikian juga dengan Batik tradisional Surakarta. Ciri yang digunakan untuk menjadi pembeda dengan ciri batik dari wilayah lain antara lain ciri bentuk [1] [2] [3][4] [5], ciri tekstur [6] [7] [8][9] [10], dan juga ciri warna [11] [12]. Dari berbagai ciri yang digunakan untuk identifikasi batik daerah satu dengan yang lain ada yang memiliki kesamaan namun ada juga yang memiliki perbedaan.…”
Section: Pendahuluanunclassified
“…An example of a batik image is shown in Figure 1. In general, there are two patterns of batik drawings, geometric and non-geometric patterns [12]. Dataset is available download at https://github.com/agusekominarno/batik.…”
Section: The Datasetmentioning
confidence: 99%
“…This knowledge needs to be introduced to the general public through an easily accessible application. Several studies on batik have been proposed, such as the Content Based Image Retrieval (CBIR) technique for retrieving batik images using Color Difference Histogram (CDH) [8], enhanced micro-structure descriptor [9], Multi Texton Co-Occurrence Descriptor [10], Multi Structure Co-occurrence Descriptor [11], improved completed robust local binary pattern [12], Texture Fusion [13]. However, all those studies are build for desktop.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The equation of size and image improvement needs to be done to get better results, the method used in image improvement is contrast stretching (I Made Dwi Putra Asana, 2017;Purba, 2017;Sianturi, 2015). The improved image results are grouped and measured, the adaptive thresholding method is used to measure and get the characteristics of its image (Sinaga, 2017;Kurniawardhani, 2017). To get more optimal results, it is necessary to localize the desired object so that only the desired results are obtained (Alibeigi, 2015;Ambarwati, 2016).…”
Section: Introductionmentioning
confidence: 99%