Machine elements produced in large quantities undergo several development cycles and can be adapted from generation to generation. Thus, experiences from real operation can be taken into account in further development. This is not possible for innovative investment goods such as special purpose machines, as these are usually individual items. Therefore, functionality and quality of newly developed components must be assured by previous investigations.Conventional methods are inadequate at this point, as they cannot represent the actual, complex operating conditions in the later application. A reliable statement about the behavior of the system through a comprehensive validation in laboratory tests under standardized conditions is not achievable in this way due to a multitude of diversified load cases.In previous work, a method was developed to allow testing of machine elements in the laboratory under detuned operating conditions. For this purpose, disturbance variables are applied to the system using paraffin wax phase change actuators in order to simulate real operation states and to analyze the behavior of the machine element under these conditions. The investigated disturbance variables are fluctuations and asymmetries of the operating load through superimposed temperature gradients. Complex interactions between the machine element and the adjacent components or the overall system can thus be taken into account.The functionality of the methodology has been developed and briefly demonstrated so far. This paper presents the next level within the development process of the methodology. The necessary components are explained in detail and an AI black box evaluation tool is discussed. This work is based on a test bench that applies dynamically changing states of detuning under superimposed disturbances. Additionally, energy efficiency and performance of the test setup is advanced. As presented, the method opens up the possibility of validating new machine elements in the laboratory under realistic conditions.