2022
DOI: 10.1007/s12145-021-00755-7
|View full text |Cite
|
Sign up to set email alerts
|

Efficient weighted naive bayes classifiers to predict air quality index

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 15 publications
(4 citation statements)
references
References 25 publications
0
3
0
1
Order By: Relevance
“…Confusion Matrix adalah alat lain untuk memvisualisasikan hasil pembelajaran sistem; itu menunjukkan setidaknya dua kategori sekaligus [19]. Ilustrasi hasil ramalan Confusion Matrix untuk dua kelas dapat dilihat pada tabel di bawah ini.…”
Section: K Evaluasi Confusion Matrixunclassified
“…Confusion Matrix adalah alat lain untuk memvisualisasikan hasil pembelajaran sistem; itu menunjukkan setidaknya dua kategori sekaligus [19]. Ilustrasi hasil ramalan Confusion Matrix untuk dua kelas dapat dilihat pada tabel di bawah ini.…”
Section: K Evaluasi Confusion Matrixunclassified
“…The Naïve Bayes classifier is surprisingly effective in practice since its classification decision may often be correct even if its probability estimates are inaccurate [33]. Recently in the weather classification area, weighted Naïve Bayes classifiers performed better than the traditional Naïve Bayes, Support Vector Machines, and Neural Network classifiers with respect to various performance metrics-accuracy, average precision, average recall, error rate, and F1 score [34]. It is a method of using covariance as a weight to supplement the assumption of independence between characteristics.…”
Section: Machine Learning Approachmentioning
confidence: 99%
“…Typically, classification serves as a valuable tool for making decisions in situations involving complex problems and extensive datasets. Examples of classification techniques includeaïve Bayes [1,2], decision tree-based approaches [3,4], rule-based methods [5,6], upport vector machines (SVMs) [7,8], neural networks [9,10], k-nearest neighbor (KNN) [11,12], and statistical methods like logistic regression [13,14]. Support vector machine (SVM) and logistic regression (LR) represent two widely utilized supervised classification methods [15,16].…”
Section: Introductionmentioning
confidence: 99%