The recently demonstrated Cs3Bi2I9 single crystals (SCs) exhibit superior performance for X‐ray detection. More importantly, they do not contain any toxic lead element. However, compared with lead‐halide perovskites, one challenge for the Cs3Bi2I9 SC for X‐ray detection application is that it is difficult to prepare large‐sized and high‐quality SCs. Here, a liquid diffused separation induced crystallization (LDSC) method is employed to grow Cs3Bi2I9 SCs for eliminating the temperature fluctuation and convection currents caused by the thermal gradient in the growth solution. The resultant Cs3Bi2I9 SC exhibits a microstrain of 1.21 × 10–3, a resistivity of 1.12 × 109 Ω cm, a carrier mobility of 4.57 cm2 V–1 s–1, and a mobility‐lifetime product of 1.87 × 10–3 cm2 V–1. As a result, an X‐ray detector based on the high‐quality Cs3Bi2I9 SC exhibits an excellent dose rate linearity, a sensitivity of 964 µC Gyair–1 cm–2, and a limit of detection (LoD) of 44.6 nGyair s–1.