This paper studies the phenomenon of joint generation of terahertz (THz) and X-ray radiation in the argon nanocluster jet under the action of high-power femtosecond laser pulse in both the single-color and dual-color regimes. It was discovered that in a gas cluster beam the pulse duration affects the properties of THz and X-ray emission differently. For the same given total energy of optical pulse in the dual-color excitation regime of cluster medium, more than a five times increase of THz radiation power was observed in comparison with the single-color regime, while the conversion efficiency to the argon X-ray K-line reached 7 × 10 −6 and remained unchanged. The possibility of separation of contributions of different beam components into the THz signal was demonstrated experimentally, using contributions from clusters and nonclustered gas as an example. We suggest an interpretation of experimental results based on a theoretical model of cluster ionization that self-consistently predicts the level and dynamics of ionization and electron temperature in the clusters.Index Terms-Femtosecond laser pulses, gas cluster beam/jet, high-intensity radiation, nanoplasma, quadrupole radiation, terahertz (THz) and X-ray emission.