2021
DOI: 10.1155/2021/9985401
|View full text |Cite
|
Sign up to set email alerts
|

EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction

Abstract: To improve foresight and make correct judgment in advance, pedestrian trajectory prediction has a wide range of application values in autonomous driving, robot interaction, and safety monitoring. However, most of the existing methods only focus on the interaction of local pedestrians according to distance, ignoring the influence of far pedestrians; the range of network input (receptive field) is small. In this paper, an extended graph attention network (EGAT) is proposed to increase receptive field, which focu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?