Epidermal growth factor receptor (EGFR) signalling results in a variety of cell behaviours, including cell proliferation, migration and apoptosis, which depend on cell context. Here we have explored how the Rab5GEF, Rme-6, regulates EGFR signalling by modulating endocytic flux. We demonstrate that Rme-6, which acts early in the endocytic pathway, regulates EGFR trafficking through an endocytic compartment that is competent for ERK1/2 signalling. While overexpression of Rme-6 results in enhanced ERK1/2 nuclear localisation and c-Fos activation, loss of Rme-6 results in aberrant ERK1/2 signalling with increased cytoplasmic ERK1/2 phosphorylation (Thr202/Tyr204) but decreased ERK1/2 nuclear translocation and c-Fos activation, the latter leading to decreased cell proliferation. Phosphorylation of ERK1/2 by protein kinase 2 (CK2) is required for its nuclear translocation and our data support a model whereby Rme-6 provides a scaffold for a population of CK2 which is required for efficient nuclear translocation of ERK1/2. Rme-6 is itself a substrate for CK2 on Thr642 and Ser996 and phosphorylation on these sites can activate its Rab5GEF activity and endocytic trafficking of EGFR. Together our results indicate that that Rme-6 co-ordinates EGFR trafficking and signalling to regulate the assembly and disassembly of an ERK1/2 signalosome.