Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The problem of representing nodes in a signed network as low-dimensional vectors, known as signed network embedding (SNE), has garnered considerable attention in recent years. While several SNE methods based on graph convolutional networks (GCN) have been proposed for this problem, we point out that they significantly rely on the assumption that the decades-old balance theory always holds in the real-world. To address this limitation, we propose a novel GCN-based SNE approach, named as TrustSGCN, which corrects for incorrect embedding propagation in GCN by utilizing the trustworthiness on edge signs for high-order relationships inferred by the balance theory. The proposed approach consists of three modules: (M1) generation of each node’s extended ego-network; (M2) measurement of trustworthiness on edge signs; and (M3) trustworthiness-aware propagation of embeddings. Specifically, TrustSGCN leverages topological information to measure trustworthiness on edge sign for high-order relationships inferred by balance theory. It then considers structural properties inherent to an input network, such as the ratio of triads, to correct for incorrect embedding propagation. Furthermore, TrustSGCN learns the node embeddings by leveraging two well-known social theories, i.e. , balance and status, to jointly preserve the edge sign and direction between nodes connected by existing edges in the embedding space. The experiments on six real-world signed network datasets demonstrate that TrustSGCN consistently outperforms six state-of-the-art GCN-based SNE methods. The code is available at https://github.com/kmj0792/TrustSGCN .
The problem of representing nodes in a signed network as low-dimensional vectors, known as signed network embedding (SNE), has garnered considerable attention in recent years. While several SNE methods based on graph convolutional networks (GCN) have been proposed for this problem, we point out that they significantly rely on the assumption that the decades-old balance theory always holds in the real-world. To address this limitation, we propose a novel GCN-based SNE approach, named as TrustSGCN, which corrects for incorrect embedding propagation in GCN by utilizing the trustworthiness on edge signs for high-order relationships inferred by the balance theory. The proposed approach consists of three modules: (M1) generation of each node’s extended ego-network; (M2) measurement of trustworthiness on edge signs; and (M3) trustworthiness-aware propagation of embeddings. Specifically, TrustSGCN leverages topological information to measure trustworthiness on edge sign for high-order relationships inferred by balance theory. It then considers structural properties inherent to an input network, such as the ratio of triads, to correct for incorrect embedding propagation. Furthermore, TrustSGCN learns the node embeddings by leveraging two well-known social theories, i.e. , balance and status, to jointly preserve the edge sign and direction between nodes connected by existing edges in the embedding space. The experiments on six real-world signed network datasets demonstrate that TrustSGCN consistently outperforms six state-of-the-art GCN-based SNE methods. The code is available at https://github.com/kmj0792/TrustSGCN .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.