A temperature activated crossover between two nucleation regimes is observed in the behavior of Ga droplet nucleation on vicinal GaAs(111)A substrates with a miscut of 2° towards $$(\bar{1}\bar{1}2)$$
(
1
¯
1
¯
2
)
. At low temperature (<400 °C) the droplet density dependence on temperature and flux is compatible with droplet nucleation by two-dimensional diffusion. Increasing the temperature, a different regime is observed, whose scaling behavior is compatible with a reduction of the dimensionality of the nucleation regime from two to one dimension. We attribute such behavior to a presence of finite width terraces and a sizeable Ehrlich-Schwöbel barrier at the terrace edge, which hinders adatom diffusion in the direction perpendicular to the steps.