“…Some of the earlier works on cQA include the use of classification models -Support Vector Machines(SVMs) (Šaina et al, 2017;Nandi et al, 2017;Xie et al, 2017;Mihaylova et al, 2016;Wang and Poupart, 2016; for Similarity tasks; Convolutional Neural Networks (CNNs) for Similarity tasks (Šaina et al, 2017;Mohtarami et al, 2016) and for answer selection (Zhang et al, 2017); Long-Short Term Memory (LSTM) model for answer selection (Zhang et al, 2017;Feng et al, 2017;Mohtarami et al, 2016); Random Forests (Wang and Poupart, 2016); LDA topic language model to match the questions at both the term level and topic level (Zhang et al, 2014); translation based retrieval models (Jeon et al, 2005;Zhou et al, 2011); XgBoost (Feng et al, 2017) and Feedforward Neural Network (NN) (Wang and Poupart, 2016 (Mikolov et al, 2013), GloVe 6 (Pennington et al, 2014) etc.) (Wang and Poupart, 2016;Mohtarami et al, 2016;Nandi et al, 2017); Metadata-based features (like user information, answer length, question length, question marks in answer, question to comment length etc.)…”