2004
DOI: 10.1007/978-3-540-40962-5_7
|View full text |Cite
|
Sign up to set email alerts
|

Eight Lectures on Integrable Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
67
0
5

Year Published

2006
2006
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 46 publications
(76 citation statements)
references
References 0 publications
0
67
0
5
Order By: Relevance
“…Compatibility of two "time" evolutions a priori does not guarantee the existence of a Poisson structure which would render these two evolutions Hamiltonian. Were such a Poisson structure built, it only guarantees the Poisson commutation of the two corresponding Hamiltonians but not the existence of higher conserved Poisson commuting Hamiltonians, unless a Magri-type algorithm [26,27] allows to build a recursion operator from the two Hamiltonians and the Poisson structure, and hence to deduce the hierarchy of Poisson structure dual to the postulated hierarchy of hamiltonians. To formulate in another language: Equation (4.2) can be interpreted indeed as a Bäcklund transformation (see e.g.…”
Section: Jhep11(2012)008mentioning
confidence: 99%
See 1 more Smart Citation
“…Compatibility of two "time" evolutions a priori does not guarantee the existence of a Poisson structure which would render these two evolutions Hamiltonian. Were such a Poisson structure built, it only guarantees the Poisson commutation of the two corresponding Hamiltonians but not the existence of higher conserved Poisson commuting Hamiltonians, unless a Magri-type algorithm [26,27] allows to build a recursion operator from the two Hamiltonians and the Poisson structure, and hence to deduce the hierarchy of Poisson structure dual to the postulated hierarchy of hamiltonians. To formulate in another language: Equation (4.2) can be interpreted indeed as a Bäcklund transformation (see e.g.…”
Section: Jhep11(2012)008mentioning
confidence: 99%
“…[25] regarding the problems related to non-local and/or skew symmetric r-matrices and [26,28] for the issue of finding the quadratic Poisson structure "derived" from a linear dynamical r-matrix structure. Within our restricted conditions the bulk monodromy operators then obey a wellestablished quadratic Poisson algebra [29].…”
Section: Introductionmentioning
confidence: 99%
“…In this section we review some facts on the geometry of bi-Hamiltonian manifolds (see, e.g., [19,5]), and we recall from [18] that the bi-Hamiltonian structure of the (usual) CH hierarchy can be obtained by means of a reduction. Let (M, P 1 , P 2 ) be a bi-Hamiltonian manifold, i.e., a manifold M endowed with two compatible Poisson tensors P 1 and P 2 .…”
Section: Some Information About the Bi-hamiltonian Reductionmentioning
confidence: 99%
“…будем называть для краткости биинтегрируемыми системами или обобщенными бигамильтоновыми системами. Для того чтобы интегралы движения находились в биинволюции (1.1), достаточно, чтобы соответствующие им векторные поля X Hi были бигамильтоновыми [1], [2]. В этом случае интегралы движения H i образуют цепочку Ленарда-Магри и удовлетворяют соотношениям P dH 0 = 0, X Hi = P dH i = P dH i−1 , P dH n = 0.…”
Section: Introductionunclassified