The combination of an activator with a headgear is a common method used to correct hyperdivergent Class II malocclusion, improving skeletal and dental relationship, distal displacement of the maxilla, and controlling vertical eruption and upper molars distalization. The importance of studying three-dimensional effects of mechanical tension on teeth, oral structures and craniofacial complex, associated with the use of these activators, is essential to ensure the success of clinical treatments. Three-dimensional finite element method use in orthodontics is gaining high acceptance from the researchers, particularly in the use of headgear activators. This study presents a mini-review of literature studies that use three-dimensional finite element method to investigate three-dimensional effects of the mechanical tension originated by highpull headgear activators, on the treatment of hyperdivergentClass II malocclusion, in the last decade.Using set key words and inclusion and exclusion criteria, three articles wereidentified. Both studies point out the effectiveness of finite element method in the evaluation of biomechanical effects from these activators and stand out the importance of the modeling procedure in the accuracy of the experimental results. The future research in this area will be the development of more and complementary studies including different in-vitro conditions, accompanied by clinical and/or animal studies.