The behavior of non-smooth solitary waves switching to chaos is studied. Firstly, we present some singular homoclinic orbits of an unperturbed system. These singular homoclinic orbits correspond to non-smooth solutions. Secondly, we find that the peculiar solitary waves are more likely to be chaos by using the Melnikov theory. Finally, chaos thresholds under different amplitudes and frequencies of a periodic perturbation are given. One interesting finding is that there exists a peculiar perturbation frequency, which has significant effect on the system. The system is not well-controlled under this frequency. However, the system can be well controlled, when the frequency of the perturbation surpasses the peculiar perturbation frequency with fixed parameters of the unperturbed system.