1959
DOI: 10.1007/bf01600525
|View full text |Cite
|
Sign up to set email alerts
|

Eine wahrscheinlichkeitstheoretische Begründung der Integrationsformeln von Newton-Cotes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

1960
1960
1963
1963

Publication Types

Select...
3
2

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 4 publications
0
3
0
1
Order By: Relevance
“…A second approach to the problem is found in some fairly recently published papers on numerical methods (see Blanc [1], BlancLiniger [2] and Uhlmann [11]). These authors consider the classical situation when one has to compute a definite integral by numerical integration, but depart from the classical case in assuming that the function to be integrated is a realization of a stochastic process of the kind considered here.…”
Section: =Ex(t)2mentioning
confidence: 98%
See 2 more Smart Citations
“…A second approach to the problem is found in some fairly recently published papers on numerical methods (see Blanc [1], BlancLiniger [2] and Uhlmann [11]). These authors consider the classical situation when one has to compute a definite integral by numerical integration, but depart from the classical case in assuming that the function to be integrated is a realization of a stochastic process of the kind considered here.…”
Section: =Ex(t)2mentioning
confidence: 98%
“…The process {Yv; v = ... , -1,0,1, ... } then has covariance function (11) where the spectral density g (A) = n L~_ 00 t [n (A + 2 v n)], IAI<: ;; n.…”
Section: Best Estimates With Equally Spaced Time Poiuts: Prelimiuariesmentioning
confidence: 99%
See 1 more Smart Citation
“…. (16), wobei r = (xi-y# ist, d. h. es ist fur r 2 0 i = l IK(r).>I 5 K(0)(17).In(16) gilt bekanntlich das Gleichheitszeichen fur festes x und y dann und nur dann, wenn es zwei reelle Zahlen LY und ,!I gibt rnit aa + ,!I2 > 0 und a u(x, w ) + u(y, w) = 0 fur p-fast alle w.Um zu untersuchen, wann IK(r)l = K(0) ist, beweisen wir zunachst einenHilfssatz: Bei einem isotropen Prozej? v(x, w ) isf fur zwei feste Punkte x und y E R, dann und nur dann E [u(x, w ) u(y, w)] = K(O), wenn u(x, w ) = u(y, w ) ist fur p-fast alle w. Dagegen ist E[u(x, w ) u(y, w)] = -K(0) gleichbedeutend damit, dap u(x, w ) =u(y, w ) liir p-fast alle o ist.…”
unclassified