For the soluble endo-polygalacturonase (EC 3.2.1.15.) from Aspergillus spec., investigated in the present work, the defined substrate turnover U at 50% loss of viscosity if 0.2% and is independent on the reaction temperature. In the case of the covalently-bonded enzyme, the following linear equation applies to U, depending on the specific activity A and in the limits from A = O [U] and Amax: U = [U] + S square root of A. U is influenced by the kind of linkage, the conditions of immobilization and the properties of the carrier: it is a measure of the postulated conformational change of the polygalacturonase. The characteristic limiting value for the substrate turnover at A = O [U] is also temperature-independent and proves to be a true increment of binding, whereas Amax depends essentially on the porosity of the carrier. Polygalacturonase-sepharose complexes with a real substrate turnover U of 3--20% were prepared by varying systematically the kind of linkage and the specific activity A. It was found that with increasing U these complexes were, as a rule, inhibited to a lesser extent by a non-competitive pectinase inhibitor than the soluble polygalacturonase. Furthermore, their ability to liberate or enrich oligomeric galacturonic acids with a degree of polymerization greater than 3 was markedly reduced.