Deduction is the one of the major forms of inferences and commonly used in formal logic. This kind of inference has the feature of monotonicity, which can be problematic. There are different types of inferences that are not monotonic, e.g. abductive inferences. The debate between advocates and critics of abduction as a useful instrument can be reconstructed along the issue, how an abductive inference warrants to pick out one hypothesis as the best one. But how can the goodness of an inference be assessed? Material inferences express good inferences based on the principle of material incompatibility. Material inferences are based on modal vocabulary, which enriches the logical expressivity of the inferential relations. This leads also to certain limits in the application of labeling in machine learning. I propose a modal interpretation of implications to express conceptual relations.1 This paper is based on a talk that I gave at the International Conference on Information and Computer Technologies (ICICT 2020) in San Jose.2 Charles Sanders Peirce thinks that a perceptual judgment is really an abductive inference, that can be made explicit.[10] (CP 5.3) In epistemological debates in philosophy it is an extensively discussed topic, whether to perceive something is to draw an inference or not.