Tetralactam macrocycles can be functionalized by a variety of cross-coupling reactions. A modular "toolbox" strategy is presented that allows 1) several tetralactam macrocycles to be covalently connected with each other or with a central spacer, 2) the macrocycles to be substituted with or connected to different chromophores, and 3) metal-coordination sites to be attached to the macrocycles. With this approach a series of different oligo-macrocyclic hosts was obtained with great structural diversity and enormous potential for further functionalization. Rotaxanes made on the basis of these macrocycles have been synthesized to demonstrate their utility in building more complex supramolecular architectures.