We propose to use a five-level cascade system to enhance self-Kerr nonlinearity under an electromagnetically induced transparency (EIT) condition. Using density-matrix theory, an expression of the self-Kerr nonlinear coefficient for a weak probe light is derived. Variations of the self-Kerr coefficient with respect to the frequency and intensity of a strong coupling light are investigated. The Kerr nonlinearity is basically modified and enhanced greatly in the spectral regions corresponding to EIT transparent windows. Furthermore, the sign, slope, and magnitude of the self-Kerr coefficient can be controlled with the frequency and intensity of the coupling light. Such a controllable Kerr nonlinearity can find interesting applications in optoelectronic devices working with low light intensity at multiple frequencies.